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Covered today 

❖ Overview of LANL ARM benchmarking efforts
❖ Mini-app performance
❖ ASC/IC app performance results
❖ ARM future technologies investigations
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LANL ARM Benchmark efforts 

v Institutional Computing (IC) benchmarking team
- focus on open science applications

❖ HPC Applications Readiness (AR) team
- focus on ASC application porting/performance
- ARM future technologies effort

❖ Resources
- HPE Apollo 70 (TX2s 64 cores/node, 2/4 HT per core)
- Cray XC50’s (TX2s 56 cores/node, 4 HT per core)
- simulators
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Microbenchmark Results
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ThunderX2 comparison with Skylake, 
Broadwell on Darwin

TX2 (darwin) BWL SKL-gold 

cores/socket 32 (max 4 HT) 22 (2 HT) 22 (2 HT)

L1 cache/core 32KB I/D (8-way) 32KB I/D (8-way) 32KB I/D (8-way)

L2 cache/core 256KB (8-way) 256 KB (8-way) 1 MB (16-way)

L3 cache/socket 32 MB 33 MB 30.25 MB

#Memory 
channels/socket

8 DDR4 4 DDR4 6 DDR4

Base clock rate 2.2 GHz 2.2 GHz 2.1 GHz

vector length 128b 256b 512b max

Pagesize 64KB on 
Darwin ARM nodes

Cray ARM systems have 
4KB and 2MB pagesizes

Two ARM partitions –
4tpc and 2tpc configs
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Stream triad benchmark performance 
comparison – per node basis
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Stream triad benchmark performance comparison –
1 OpenMP thread (normalized to BWL)
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Tinybenchmem benchmark performance 
comparison – dual read test (random accesses)
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Mini-Apps Performance 
Characteristics
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Objectives of the mini-app and hopefully later 
full app performance investigations 

❖ Get a good understanding of current performance 
limitations of mini-apps on TX2 – focus on single 
core+HTs and single node performance

❖ Determine extent to which mini-app kernels can 
vectorize

❖ Use Skylake as comparison for scalar and vector 
performance

❖ Investigate ability of compilers to generate SVE code for 
performance critical loops
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Mini-apps under consideration

❖ SNAP – Sn deterministic neutron transport 
❖ Branson – Monte Carlo radiation transport
❖ Laghos
❖ xkt (EAP “proxy”)
❖ RSbench/Xsbench
❖ HPCG
❖ Cloverleaf (maybe tealeaf)
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SNAP – Proxy for Partisn

❖ Sweep algorithm sensitive to performance of caches, 
memory BW not so important (at least for realistic 
problems)

❖ Option to test OpenMP performance
❖ Crossroads benchmarks
❖ Sensitive to code generation by compiler for 

dim3_sweep, particularly the fix-up loop.  Important for 
follow-on SVE code generation studies.

❖ Cray compiler does particularly well here
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SNAP 

❖ Used Crossroads single node benchmark for runs –
inh0001t1 for pure MPI runs

❖ ARM Flang 18.1.4 and 19.0.0 on ARM nodes, -Ofast

❖ Intel 18.0.3 with flags in Makefile for isnap.  Used 
skylake-gold for comparison with TX2.

❖ Used –map-by core option for mpirun
❖ For hybrid MPI/OpenMP runs also set

OMP_PLACES=cores
OMP_PROC_BIND=close
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SNAP – Comparison with Skylake-gold and Broadwell –
MPI Only – single node (normalized to BWL)
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SNAP – CRAY compiler vs ARM FLANG
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SNAP – OpenMP performance – using those 
idle HTs

❖ Used Crossroads inh0001tX (X=1,2,4) single node 
problem

❖ Hit turbulence with ARM compilers, ended up using 
19.0.0 and using –O3 rather than –Ofast to avoid 
segfaulting in inner

❖ Hit severe turbulence with Intel compilers, similar 
segfault traceback but with any optimization level and 
all available Intel compilers (happened both with/without 
avx2/avx512 enabled)

❖ Had success with GNU 8.2.0 on Intel, at the cost of 
significant loss in base performance
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SNAP – OpenMP performance – using those 
idle HTs (normalized to SKL-1t)

0

0.5

1

1.5

2

1 2 4 8 16 32 64

TX2-1t
TX2-2t
TX2-4t
SKL-1t
SKL-2t

Pe
rfo

rm
an

ce
 w

rt
SK

L-
1t

MPI Processes

Higher is better



Slide 18UNCLASSIFIED

SNAP – MAP profile (small 1core problem)
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BRANSON – proxy for Jayenne

❖ For proxy_small.xml, appears to be compute bound
❖ RND123 not yet optimized for ARMv8
❖ Lots of time spent in math intrinsics (exp, log, sin, cos)
❖ If this is a good proxy for real app, somewhat disturbing
❖ Can compilers, using SVE vectorizer find vectors in this 

code? 
❖ Used proxy_small.xml for runs, NGROUPS=50
❖ Branson at db66bf52 on GitHub
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BRANSON – Skylake-gold vs TX2
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BRANSON – Skylake-gold vs TX2 + armpl
(normalized to SKL)
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ASC/IC TX2/Skylake Application 
Performance Comparison
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VPIC TX2/Skylake-platinum comparison – per 
node basis
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xRAGE

❖ Memory BW hungry app that makes ThunderX2 look 
good

❖ Weak scaling shaped-charge problem, run on thunder, 
Cray compilers 8.7.5
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xRAGE shaped charge problem: TX2/KNL/HSW 
performance comparison
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Partisn

❖ Neutron transport code – deterministic SN method
❖ Sensitive to cache performance, not typically memory 

bound
❖ Vectorizes very well for avx512, NEON
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Partisn – Comparison with Skylake-gold and Broadwell 
– MPI Only – single node (normalized to BWL)
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Partisn – Compiler Comparison on Cray XC50
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GROMACS 

❖ Uses explicit SIMD instructions via intrinsics.  NEON is 
supported

❖ Floating point bound (according to GROMACS 
developers)

❖ Compilers – Intel 18.0.3 on SKL,  GCC 8.2 on ARM
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GROMACS: 3.3 Million Atom Problem 
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ARM Future Technologies Effort
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Scalable Vector Extension

❖ New set of SIMD instructions added to the ARMv-8-A 
instruction set (Hot Chips 2016)

❖ Vector length agnostic (VLA), supports VL’s from 128 to 
2048b.  For portability, compilers need to generate VLA 
code

❖ 32 Z registers, 16 predicate registers, 1 FFR register 
(first fault register to handle faults in gather/scatter etc.)

❖ Predicate registers have unique capabilities (not your 
Cray J90 bitmask registers)

❖ Fujitsu A64FX processor first with SVE – 512b VL
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Exploring SVE

❖ ARM compilers can generate SVE instructions:
-march=armv8-a+sve

❖ Cray 9.0 - SVE edition compiler can also generate SVE 
instructions (fixed vector length)

❖ GNU 8.2 can also generate SVE code 
❖ ARMIE simulator.  Available on Darwin.  Will use for 

Marvell/TX4 collab – they want ARMIE traces.
❖ GEM5 based simulator from ARM, pseudo-A64FX 

parameter file
❖ Expect a newer simulator from Marvell soon  (good for 

what if experiments)
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External Collaborations

❖ Sandia Astra program

❖ Riken/Sandia ARM collaboration – Fiber benchmarks, 
etc.

❖ AWE (Tom Deakin, Simon McIntosh-Smith, etc.)
- simulator effort (they’re developing their own, not 
GEM5)
- application performance analysis collaboration

❖ Various vendors


